Gene interactions and pathways from curated databases and text-mining
Cancer Sci 2010, PMID: 20735432

Programmed cell death 4 enhances chemosensitivity of ovarian cancer cells by activating death receptor pathway in vitro and in vivo.

Zhang, Xia; Wang, Xiaoyan; Song, Xingguo; Liu, Chunmei; Shi, Yongyu; Wang, Yukun; Afonja, Olubunmi; Ma, Chunhong; Chen, Youhai H; Zhang, Lining

Chemoresistance is a major cause of treatment failure in ovarian cancer. Therefore, it is necessary to explore alternative therapeutic methods to overcome drug resistance for ovarian cancer treatment. We previously reported that programmed cell death 4 (PDCD4), a tumor suppressor, significantly suppresses the malignant phenotype of ovarian cancer cells and its lost or low expression in ovarian cancer is associated with unfavorable prognosis of patients. Here we show that PDCD4 improves the sensitivity of ovarian cancer cells to platinum-based chemotherapy. Overexpression of PDCD4 enhanced chemosensitivity in SKOV3 and CAOV3 cells with low levels of PDCD4, whereas knockdown of PDCD4 reduced chemosensitivity in OVCAR3 cells with high levels of PDCD4. Subsequently, the combination of enforced PDCD4 expression with cisplatin treatment significantly suppressed ovarian tumor growth in a xenograft animal model. The PDCD4 effect appears to be specific for cisplatin and carboplatin, not affecting cyclophosphamide, etoposide, or paclitaxel. Mechanistically, PDCD4 significantly increased cisplatin-induced cleavage of caspase-3 and caspase-8, but had only a slight impact on caspase-9 cleavage and the expression of Bax and Bcl-2 in vitro and in vivo. A specific caspase-8 inhibitor, Z-ITED-FMK, attenuated cisplatin-induced apoptosis in PDCD4-overexpressing ovarian cancer cells. Taken together, our results indicate that PDCD4 enhances cisplatin-induced apoptosis by mainly activating the death receptor pathway, and PDCD4 gene transfer in combination with cisplatin therapy may break the resistance of ovarian cancer cells to chemotherapy.

Diseases/Pathways annotated by Medline MESH: Ovarian Neoplasms
Document information provided by NCBI PubMed

Text Mining Data

caspase-3 → PDCD4: " Mechanistically, PDCD4 significantly increased cisplatin induced cleavage of caspase-3 and caspase-8, but had only a slight impact on caspase-9 cleavage and the expression of Bax and Bcl-2 in vitro and in vivo "

Manually curated Databases

No curated data.