Schema for Nematodes Chain/Net - Nematodes Chain and Net Alignments
  Database: ce11    Primary Table: chainSchistosoma_haematobium    Row Count: 36,285   Data last updated: 2018-12-05
Format description: Summary info about a chain of alignments
On download server: MariaDB table dump directory
fieldexampleSQL type info description
bin 585smallint(5) unsigned range Indexing field to speed chromosome range queries.
score 8874double range score of chain
tName chrIvarchar(255) values Target sequence name
tSize 15072434int(10) unsigned range Target sequence size
tStart 4254int(10) unsigned range Alignment start position in target
tEnd 6340int(10) unsigned range Alignment end position in target
qName KL250682v1varchar(255) values Query sequence name
qSize 436612int(10) unsigned range Query sequence size
qStrand -char(1) values Query strand
qStart 215491int(10) unsigned range Alignment start position in query
qEnd 220068int(10) unsigned range Alignment end position in query
id 12514int(10) unsigned range chain id

Sample Rows
 
binscoretNametSizetStarttEndqNameqSizeqStrandqStartqEndid
5858874chrI1507243442546340KL250682v1436612-21549122006812514
5858944chrI1507243450277852KL250506v1947106+78344778906012378
58510869chrI150724341883320026KL251117v1181563-95144963759101
5852677chrI150724344148941616KL251314v1123994-4120424435330
58515376chrI150724345015651985KL251314v1123994-8874107974686
58511838chrI150724345382154438KL250803v1334357+3000103007007769
58513480chrI150724346947777461KL250511v1926242-8261878291206033
58514963chrI150724347307877777KL251250v1138179-55381641164926
58515208chrI150724347498177460KL250869v1294059-16290219414792
5858386chrI150724347632877068KL250597v1568236+36482936554513643

Note: all start coordinates in our database are 0-based, not 1-based. See explanation here.

Nematodes Chain/Net (nematodesChainNet) Track Description
 

Description

This track shows regions of the genome that are alignable to other genomes ("chain" subtracks) or in synteny ("net" subtracks). The alignable parts are shown with thick blocks that look like exons. Non-alignable parts between these are shown like introns.

Chain Track

The chain track shows alignments of a query genome sequence to the C. elegans genome using a gap scoring system that allows longer gaps than traditional affine gap scoring systems. It can also tolerate gaps in both the query sequence and C. elegans simultaneously. These "double-sided" gaps can be caused by local inversions and overlapping deletions in both species.

The chain track displays boxes joined together by either single or double lines. The boxes represent aligning regions. Single lines indicate gaps that are largely due to a deletion in the the query sequence assembly or an insertion in the C. elegans assembly. Double lines represent more complex gaps that involve substantial sequence in both species. This may result from inversions, overlapping deletions, an abundance of local mutation, or an unsequenced gap in one species. In cases where multiple chains align over a particular region of the C. elegans genome, the chains with single-lined gaps are often due to processed pseudogenes, while chains with double-lined gaps are more often due to paralogs and unprocessed pseudogenes.

In the "pack" and "full" display modes, the individual feature names indicate the chromosome, strand, and location (in thousands) of the match for each matching alignment.

Net Track

The net track shows the best query sequence/C. elegans chain for every part of the C. elegans genome. It is useful for finding syntenic regions, possibly orthologs, and for studying genome rearrangement.

Display Conventions and Configuration

Chain Track

By default, the chains to chromosome-based assemblies are colored based on which chromosome they map to in the aligning organism. To turn off the coloring, check the "off" button next to: Color track based on chromosome.

To display only the chains of one chromosome in the aligning organism, enter the name of that chromosome (e.g. chr4) in box next to: Filter by chromosome.

Net Track

In full display mode, the top-level (level 1) chains are the largest, highest-scoring chains that span this region. In many cases gaps exist in the top-level chain. When possible, these are filled in by other chains that are displayed at level 2. The gaps in level 2 chains may be filled by level 3 chains and so forth.

In the graphical display, the boxes represent ungapped alignments; the lines represent gaps. Click on a box to view detailed information about the chain as a whole; click on a line to display information about the gap. The detailed information is useful in determining the cause of the gap or, for lower level chains, the genomic rearrangement.

Individual items in the display are categorized as one of four types (other than gap):

  • Top - the best, longest match. Displayed on level 1.
  • Syn - line-ups on the same chromosome as the gap in the level above it.
  • Inv - a line-up on the same chromosome as the gap above it, but in the opposite orientation.
  • NonSyn - a match to a chromosome different from the gap in the level above.

Methods

Chain track

Transposons that have been inserted since the query sequence/C. elegans split were removed from the assemblies. The abbreviated genomes were aligned with lastz, and the transposons were added back in. The resulting alignments were converted into axt format using the lavToAxt program. The axt alignments were fed into axtChain, which organizes all alignments between a single query sequence chromosome and a single C. elegans chromosome into a group and creates a kd-tree out of the gapless subsections (blocks) of the alignments. A dynamic program was then run over the kd-trees to find the maximally scoring chains of these blocks. Chains scoring below a minimum score of "5000" were discarded; the remaining chains are displayed in this track. The linear gap matrix used with axtChain:

-linearGap=loose

tablesize    11
smallSize   111
position  1   2   3   11  111  2111  12111  32111  72111  152111  252111
qGap    325 360 400  450  600  1100   3600   7600  15600   31600   56600
tGap    325 360 400  450  600  1100   3600   7600  15600   31600   56600
bothGap 625 660 700  750  900  1400   4000   8000  16000   32000   57000

Net track

Chains were derived from lastz alignments, using the methods described on the chain tracks description pages, and sorted with the highest-scoring chains in the genome ranked first. The program chainNet was then used to place the chains one at a time, trimming them as necessary to fit into sections not already covered by a higher-scoring chain. During this process, a natural hierarchy emerged in which a chain that filled a gap in a higher-scoring chain was placed underneath that chain. The program netSyntenic was used to fill in information about the relationship between higher- and lower-level chains, such as whether a lower-level chain was syntenic or inverted relative to the higher-level chain. The program netClass was then used to fill in how much of the gaps and chains contained Ns (sequencing gaps) in one or both species and how much was filled with transposons inserted before and after the two organisms diverged.

Credits

Lastz (previously known as blastz) was developed at Pennsylvania State University by Minmei Hou, Scott Schwartz, Zheng Zhang, and Webb Miller with advice from Ross Hardison.

Lineage-specific repeats were identified by Arian Smit and his RepeatMasker program.

The axtChain program was developed at the University of California at Santa Cruz by Jim Kent with advice from Webb Miller and David Haussler.

The browser display and database storage of the chains and nets were created by Robert Baertsch and Jim Kent.

The chainNet, netSyntenic, and netClass programs were developed at the University of California Santa Cruz by Jim Kent.

References

Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002:115-26. PMID: 11928468

Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9. PMID: 14500911; PMC: PMC208784

Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7. PMID: 12529312; PMC: PMC430961