[Pub] Hon_Mouse_2014 Track Settings
 
5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation

Maximum display mode:       Reset to defaults   
Select dataType (Help):
partially methylated domain       hypomethylated regions       methylation level ▾       coverage ▾       allelic score ▾       allele specific methylated regions       hydroxy methylation level ▾      
Select subtracks by celltype:
Celltype
Mouse ESC.tet1KO
Mouse ESC
Mouse ESC.tet2KO.TAB
Mouse ESC.tet2KO
Mouse ESC.tet2KO.day3
Mouse ESC.tet1KO.TAB
Mouse ESC.TAB
Mouse ESC.day3
List subtracks: only selected/visible    all    ()
  Celltype↓1 dataType↓2   Track Name↓3  
hide
 Mouse ESC.tet1KO  hypomethylated regions  Mouse_ESC.tet1KO_HMR   Data format 
hide
 Configure
 Mouse ESC.tet1KO  methylation level  Mouse_ESC.tet1KO_Meth   Data format 
hide
 Mouse ESC  hypomethylated regions  Mouse_ESC_HMR   Data format 
hide
 Configure
 Mouse ESC  methylation level  Mouse_ESC_Meth   Data format 
hide
 Configure
 Mouse ESC.tet2KO.TAB  hydroxy methylation level  Mouse_ESC.tet2KO.TAB_HydroxyMeth   Data format 
hide
 Mouse ESC.tet2KO  hypomethylated regions  Mouse_ESC.tet2KO_HMR   Data format 
hide
 Configure
 Mouse ESC.tet2KO  methylation level  Mouse_ESC.tet2KO_Meth   Data format 
hide
 Mouse ESC.tet2KO.day3  hypomethylated regions  Mouse_ESC.tet2KO.day3_HMR   Data format 
hide
 Configure
 Mouse ESC.tet2KO.day3  methylation level  Mouse_ESC.tet2KO.day3_Meth   Data format 
hide
 Configure
 Mouse ESC.tet1KO.TAB  hydroxy methylation level  Mouse_ESC.tet1KO.TAB_HydroxyMeth   Data format 
    
Assembly: Mouse Dec. 2011 (GRCm38/mm10)

Hon_Mouse_2014
We are planning to introduce the new version of methylone track hubs sometime between February 7 and February 14 2024. The following assemblies will be updated: mm39, gorGor6, canFam6, GCF_000001735.3, rn7, panTro6, hg38.

Description

Sample BS rate* Methylation Coverage %CpGs #HMR #AMR #PMD
Mouse_ESC.tet1KO tet1-/- WGBS 0.994 0.495 35.568 0.917 68285 196982 4943 Download
Mouse_ESC WT WGBS 0.994 0.595 38.152 0.919 75630 186778 6679 Download
Mouse_ESC.tet2KO.TAB tet2-/- TAB-Seq 0.996 0.016 46.460 0.917 0 0 0 non-WGBS; Download
Mouse_ESC.tet2KO tet2-/- WGBS 0.995 0.510 18.166 0.912 42379 183111 3117 Download
Mouse_ESC.tet2KO.day3 tet2-/- day 3 differentiation WGBS 0.981 0.831 0.260 0.211 17607 8 238 LowCov; Download
Mouse_ESC.tet1KO.TAB tet1-/- TAB-Seq 0.995 0.027 27.707 0.918 0 0 0 non-WGBS; Download
Mouse_ESC.TAB WT TAB-Seq 0.996 0.043 30.771 0.918 0 0 0 non-WGBS; Download
Mouse_ESC.day3 WT day 3 differentiation WGBS 0.982 0.845 0.231 0.184 15021 11 172 LowCov; Download

* see Methods section for how the bisulfite conversion rate is calculated
Sample flag:
non-WGBS:  sample is not generated with whole-genome bisulfite sequencing (WGBS);
LowCov:  sample has low mean coverage (<6.0)

Terms of use: If you use this resource, please cite us! The Smith Lab at USC has developed and is owner of all analyses and associated browser tracks from the MethBase database (e.g. tracks displayed in the "DNA Methylation" trackhub on the UCSC Genome Browser). Any derivative work or use of the MethBase resource that appears in published literature must cite the most recent publication associated with Methbase (see "References" below). Users who wish to copy the contents of MethBase in bulk into a publicly available resource must additionally have explicit permission from the Smith Lab to do so. We hope the MethBase resource can help you!

Display Conventions and Configuration

The various types of tracks associated with a methylome follow the display conventions below. Green intervals represent partially methylated region; Blue intervals represent hypo-methylated regions; Yellow bars represent methylation levels; Black bars represent depth of coverage; Purple intervals represent allele-specific methylated regions; Purple bars represent allele-specific methylation score; and red intervals represent hyper-methylated regions.

Methods

All analysis was done using a bisulfite sequnecing data analysis pipeline MethPipe developed in the Smith lab at USC.

Mapping bisulfite treated reads: Bisulfite treated reads are mapped to the genomes with the rmapbs program (rmapbs-pe for pair-end reads), one of the wildcard based mappers. Input reads are filtered by their quality, and adapter sequences in the 3' end of reads are trimmed. Uniquely mapped reads with mismatches below given threshold are kept. For pair-end reads, if the two mates overlap, the overlapping part of the mate with lower quality is clipped. After mapping, we use the program duplicate-remover to randomly select one from multiple reads mapped exactly to the same location.

Estimating methylation levels: After reads are mapped and filtered, the methcounts program is used to obtain read coverage and estimate methylation levels at individual cytosine sites. We count the number of methylated reads (containing C's) and the number of unmethylated reads (containing T's) at each cytosine site. The methylation level of that cytosine is estimated with the ratio of methylated to total reads covering that cytosine. For cytosines within the symmetric CpG sequence context, reads from the both strands are used to give a single estimate.

Estimating bisulfite conversion rate: Bisulfite conversion rate is estimated with the bsrate program by computing the fraction of successfully converted reads (read out as Ts) among all reads mapped to presumably unmethylated cytosine sites, for example, spike-in lambda DNA, chroloplast DNA or non-CpG cytosines in mammalian genomes.

Identifying hypo-methylated regions: In most mammalian cells, the majority of the genome has high methylation, and regions of low methylation are typically more interesting. These are called hypo-methylated regions (HMR). To identify the HMRs, we use the hmr which implements a hidden Markov model (HMM) approach taking into account both coverage and methylation level information.

Identifying hyper-methylated regions: Hyper-methylated regions (HyperMR) are of interest in plant methylomes, invertebrate methylomes and other methylomes showing "mosaic methylation" pattern. We identify HyperMRs with the hmr_plant program for those samples showing "mosaic methylation" pattern.

Identifying partially methylated domains: Partially methylated domains are large genomic regions showing partial methylation observed in immortalized cell lines and cancerous cells. The pmd program is used to identify PMDs.

Identifying allele-specific methylated regions: Allele-Specific methylated regions refers to regions where the parental allele is differentially methylated compared to the maternal allele. The program allelicmeth is used to allele-specific methylation score can be computed for each CpG site by testing the linkage between methylation status of adjacent reads, and the program amrfinder is used to identify regions with allele-specific methylation.

For more detailed description of the methods of each step, please refer to the reference by Song et al. For instructions on how to use MethPipe, you may obtain the MethPipe Manual.

Credits

The raw data were produced by Hon GC et al. The data analysis were performed by members of the Smith lab.

Contact: Benjamin Decato and Liz Ji

Terms of Use

If you use this resource, please cite us! The Smith Lab at USC has developed and is owner of all analyses and associated browser tracks from the MethBase database (e.g. tracks displayed in the "DNA Methylation" trackhub on the UCSC Genome Browser). Any derivative work or use of the MethBase resource that appears in published literature must cite the most recent publication associated with Methbase (see "References" below). Users who wish to copy the contents of MethBase in bulk into a publicly available resource must additionally have explicit permission from the Smith Lab to do so. We hope the MethBase resource can help you!

References

MethPipe and MethBase

Song Q, Decato B, Hong E, Zhou M, Fang F, Qu J, Garvin T, Kessler M, Zhou J, Smith AD (2013) A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLOS ONE 8(12): e81148

Data sources

Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY, Yen CA, Ye Z, Mao SQ, Wang BA, et al 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol. Cell. 2014 56(2):286-97